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Computer simulation of the melting kinetics of polymer crystals under
condition of modulated temperature’
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Abstract

Computer simulation has been applied to the modeling of the melting kinetics of polymer crystals, which we have recently
presented to predict the response of the kinetics to a sinusoidal modulation in temperature on heating. The frequency and
heating-rate dependencies have been examined with a Gaussian or uniform distribution of the melting points. For both of the
distributions, the details of the dependence have been examined on the basis of the analytical results of the modeling. It has
also been confirmed that the response of the kinetics has higher harmonics as expected from the formulation of the modeling.
This behavior corresponds to the experimental results of temperature-modulated DSC (T-MDSC) in the melting region of
polymer crystals. © 1999 Elsevier Science B.V. All rights reserved.
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In a temperature-modulated differential scanning ACe ™ = AC —iAl” 7 (4)
calorimetry (T-MDSC) [1-6], we apply a temperature
modulation to the sample temperature, T, under linear
heating/cooling or isothermal condition. We obtain a
response in the modulated heat flow, Q, which is
related to the modulation in sample temperature with
an apparent heat capacity, ACe ', defined as

where T can be linear heating or cooling, T,=pt, ora
constant temperature.

The apparent heat capacity is a complex quantity in
the temperature range of a relaxation process such as
the « process related to the glass transition [7-9] and
in the range of phase transitions such as crystallization

Ty = T+ Ts @9, (D [10-14] and melting [1-3,15-18]. In the melting
L region of polymer crystals, it is known that the appar-
0=0+40 ei(wﬂré)’ (2) ent heat capacity shows large peaks in magnitude and

phase angle. We have argued that the response of the
melting kinetics is responsible for these large changes
[16-18].
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In the following, we first review the basic idea of our
approach and then show the analytical results of the
modeling. The method of computer simulation is
presented subsequently and the results are examined
on the basis of the analytical results.

2. Modeling [16,17]
2.1. A basic model

In the transformation region, the heat flow to and
from the sample can be represented by the sum of the
contribution from heat capacity and of the exo- or
endothermic heat flow of transformation, F(¢):

dT;

< TFO. (5)

0= —mc,
Since the rate of transformation is a function of
supercooling or superheating and hence of T, the heat
flow can be expanded about the sample temperature
for sufficiently small modulation [1-3,19]:

F(1,T,) = F(t,T) + Fir(t, T) Ty e 4 ...
(6)
The second term in the expansion must be in
balance with the modulation components of heat flow
and of contribution of heat capacity:
T . d. ., O
Qel(wt+é) = —mc, aTs el(u.}lJre) + F}Ts el(u}[+6>'
(N

By re-arranging the relationship, we obtain the
expression of the apparent heat capacity in the trans-
formation region:

ACe ™ =mc, + lF'T. (8)
w
This is the expression of the apparent heat capacity
on which our modeling of the melting kinetics is
based.
2.2. Melting of polymer crystals
Polymer samples are aggregates of small crystal-

lites, the melting points of which have a continuous
distribution mainly determined by the distribution of

lamellar thickness of crystals and the distribution
of molecular weight of polymer chains. The wide
distribution of melting points is responsible for the
broad endothermic peak (e.g. >20 K) in the melting
region of polymer crystals [20]. Hence, we need to
consider the successive melting of the crystallites in
the melting region for a heating run.

We consider the melting process of the crystallites
by introducing the crystallinity of a fraction, ¢(¢, T;,),
having the melting point in the range from T, to
T +dT,,. Then, we employ the simplest kinetics of
melting by utilizing the following differential equa-
tion:

& 0l0,Tw) = —RIAT)O(, To), ©)
where R represents the coefficient of the total melting
rate and is determined by the superheating
AT=T—T,,.

We further assume that the heating run satisfies the
condition of heating only (d7/d#>0), and hence we do
not have to consider the reverse process of crystal-
lization; the process therefore becomes a one-way
transformation of melting and the interpretation will
be straightforward. Then, the solution of Eq. (9) is
simply given as

t

6(t, Tw) = 6(0, To) exp | — / Rd’|.  (10)
0
The total crystallinity, M.(¢), and the endothermic

heat flow of melting, Fp.(f), are expressed by the
fractions as

Me() = /'dTmas(r,Tm), (1
0
am,
Fmell(t) = AHTy (12)

where AH(>0) represents the enthalpy change of the
system on melting.

It is noted that in the present treatment we will not
consider the contribution of re-crystallization and
re-organization in the melting region, because we
expect much smaller response of those processes to
temperature modulation than that of melting as is
the case for crystallization [16-18].
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2.3. Assumption of a uniform distribution of the
melting points

In order to obtain the analytical expression of the
response of heat flow to temperature modulation, we
need to assume a steady state and the same form of
R(AT) for the fractions. The steady state is realized
with a uniform distribution of the fractions at the
initial state:

¢(0,Tm) = ¢o- (13)

For the uniform distribution, the steady response in
heat flow to a sinusoidal modulation of temperature
should be represented by a Fourier series expressed as

Fmelt(t) == Fmelt + F/T(W)Ts eiwt

AR WT e 4 (14)
Fmelt - _AH¢057 (15)
F(w)Ts = ¢o3 / dre ™ F(1). (16)

The contribution of the melting kinetics to the
apparent heat capacity, f, is then defined as

ACe™ = mc, + f(w), (17

f@) = =) = if"(w) = ZFj(w).
(18)
2.4. Ro, R] and Re

We have analytically examined the following three
different dependencies on superheating of the melting
rate coefficient. As shown below, the melting kinetics
is described by a characteristic time, 7, which is
dependent on the heating rate, [, as 73" with
—1<x<0.

(i) Melting rate independent of superheating:

Ro : independent of AT, (19)
$o(At) = ¢oexp (- %) ; (20)
o) = @
0= Rio. 22)

(i1) Linear dependence of the melting rate on super-
heating:

R, = aAT, 23)
A 2
1 (AF) = o exp (— (27?) ) , (24)
filw) = Ay e‘(“”)z/e"zdx
wT]
0
. \/7_'( 7(u.;7'1)2
¥~ (1 _e ) , (25)
L\ 12

(iii) Exponential dependence of the melting rate on
superheating:

a

Re=—(e" = 1), 27
C
_ AH¢0 1 b X/Te —iwx
fe(w)—1+WTeT—é/dx(e &)
X exp {—% (e"/Te —-1- ;)] ,  (28)
e e
1
Te = @, (29)
7=< (30)
a

(a) For 7/7/>1, R.~R,, ¢po~¢; and f.~f; with
= (TeTé/Z)l/z.
(b) For 7./7./«1,

R, ~ Leesnr G1)
c
¢e(At) : nearly stepwise at At ~ 7, (32)
AH gy
~— 33
fe() I +iwre 59

3. Method of computer simulation

We consider the distribution of melting points of the
following forms corresponding to the actual distribu-
tion and to the uniform distribution of the melting
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points:
T\ 2
do(T%) ox exp [1 (k - M) ] , (34)
2 o
$o(TF) : constant, (35)
T* = BAk, (36)

where TI’; is taken discretely with the temperature
change, SAt, in a unit time, At. In Eq. (34), M and
o are the mean temperature and the peak width of the
distribution, respectively, normalized by SAf; typical
values of them were 5000 and 1000 for 10000 sites
of TX.

Sample temperature and the melting kinetics are
considered by the discrete time change, At, as
follows:

T (jAt) = BjAt + Ty sin(wjAt), (37)

A ((j+ 1)A1) = ¢(( + 1)Ar, Ty,)
— ¢(j AL, TX) = —R(AT)p(jAL, TF ) At,
(38)

Fret(j At) = —mc,[5 + Tw cos(wjAt)]

k .
Fary BPURD
k

where mc, in Eq. (39) is the true heat capacity
assumed to be constant (or zero) in the following.
The unit time Az (<0.2 s) was properly selected for the
applied modulation period taken from 1 to 800 s. The
heating rate of 3=1 K min~' was mainly examined in
the simulation.

In order to incorporate the condition out of heating
only, it is assumed that the melting-rate coefficient
becomes zero for AT<0. This condition is based on the
fact that the superheating and supercooling depen-
dence of melting and crystallization rates, respec-
tively, is quite asymmetric [20]; namely,
crystallization needs a much larger AT.

In the case of uniform distribution of the
melting points, we ran the simulation at least over
10 times the modulation period to confirm the
steady state of the process. The obtained heat flow
and the modulated sample temperature were then
analyzed by the same procedure as the experimental
data [5].

0.0

-0.5

Heat Flow
5

Heat Flow

4] 5 10 15 20 25 30
Atj in min

Fig. 1. Raw data of heat flow for different modulation periods of
(a) 20 and (b) 150 s. The parameters are the following: Ar=0.2 s,
f=1K min"', wT'/3=0.5, R=0.74AT and mc,/ AH @5 =1/4.

4. Results
4.1. Gaussian distribution of melting points

Fig. 1 shows the raw data of the heat flow with
R,=aAT for different modulation periods and Fig. 2
shows the frequency response of the apparent heat
capacity determined from the raw data. In Fig. 3, the

Normalized AC

0.0 I

Phase Angle in deg.

[} 5 10 15 20 25 30
Temperature in K

Fig. 2. Apparent heat capacity determined from the raw data as
typically shown in Fig. 1. Modulation periods are 2, 4, 6, 10, 20,
40, 80, and 150 s.
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Fig. 3. Frequency dependence of the contribution of melting
kinetics, flw), examined at three different temperatures marked in
Fig. 2 as (1) O, (2) A, (3) O. The fitting lines represent the
analytical solution of Eq. (25) for R;.

dependence is examined at three different tem-
peratures marked in Fig. 2. The basic feature in
Fig. 3 is well described by the analytical solution
of Eq. (25) for R, and is similar to the behavior
observed experimentally [16—18]. For (2) and (3) in
the shoulder of the peak in Fig. 2, the dependence
shown in Fig. 3 deviates from the fitting curve for
shorter w (longer modulation period). This behavior
should be due to the change in the distribution of
melting points on both sides of the peak, and hence it
must be due to the condition of loss of steady state; we
can also observe a similar behavior experimentally
[16-18].

4.2. Uniform distribution of melting points

Figs. 4 and 5 show the results of computer simula-
tion compared with the numerical calculations of
the analytical solutions of Egs. (21), (25) and (28)
for Ry, R; and R., respectively. The agreement
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Fig. 4. Results of computer simulation (O, A, @, A) compared
with the analytical solutions (lines) of Egs. (21) and (25) for (a) Ry
and (b) R;, respectively. Symbols (O, @) and (A, A) in (a) and
(b) represent real and imaginary components, respectively. In the
Cole—Cole plot of (c), symbols O and @ correspond to the cases of
Ry and R,, respectively. The parameters are as follows:
f=1Kmin~', wT/p=0.5 and (a) Ry=0.157 and (b) R,=0.74AT.

between simulation and numerical calculation is quite
satisfactory. As is seen in Fig. 4, the difference in the
frequency dependence of fy and f; is not large, and
hence we may be allowed to fit the data with a
frequency response function of Debye’s type equiva-
lent to fo.

In Fig. 6, the heating condition is examined for
wr=1. The simulation results of flw) are in good
agreement with the analytical results if the condition
is heating only, which is expressed as w7/ < 1 from
Eq. (1). In the analytical treatment, we have assumed
the heating-only condition. When the condition is not
satisfied, the melting process stops for some fraction
of time (R=0 for AT<0) in the range d7y/d¢<0 and
hence the magnitude of the response decreases
(Fig. 6(a)); the same effect will be responsible for
the change in the phase angle in Fig. 6(b).
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felw)/(AH ¢p)
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Fig. 5. Results of computer simulation (O, /) compared with the
analytical solution (thick line) of Eq. (28) for R.. The thin and
dotted lines represent f(w) of Egs. (33) and (25) with
le(TeTe’/Z)l/z, respectively. Symbols O and A represent real
and imaginary components, respectively. In (a), 7./7./=1 and the
asymptotic behaviors are confirmed for 7./7./>>1 and <1 in (b)
and (c), respectively. The parameters are the following:
=1 K min~', wT/3=0.5 and 7/7’= (a) 15.34/15.34, (b) 150.1/
0.540 and (c) 6.37/10000 s/s.

4.3. Heating-rate dependence of the characteristic
time

From a dimensional analysis, it is expected that the
heating-rate dependence of the characteristic time, 7,
is determined by the superheating dependence of the
melting-rate coefficient, R, as follows:

R(AT) x AT, (40)

() oc g0, (41)

which agrees with the results of the analysis shown
in Egs. (22), (26) and (29); in the case
R, o< e?T, y — oo.

By examining the frequency dependence of the
apparent heat capacity for the uniform distribution
of the melting points, we have obtained the character-
istic time, 7, from the peak frequency (wr=1) which
gives a maximum in f/. We have done the analysis

dT,
Heating only: dfs >0

T T T

0.0 |—o—a = OV hGy)

02+ g 7

0.4 @) K—

04 -

T
0.2 ﬁ -
of
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(ve - v/

o0
0.0 —o— —aounc?

-1.0 -0.5 0.0 0.5

log( T/ B)

Fig. 6. Comparison of the simulation results of f, e "% defined in
Eq. (18) with the analytical solution of f ¢~1"" for R, (o/7¢/<1)
in Eq. (33) for different heating conditions (the variable was TY).
Different symbols correspond to (period in s, 8 in K min~H)=(0)
(40, 1), (A) (40, 2) and (%) (20, 1). Melting-rate coefficient of R,
has been employed with the coefficients of a and ¢ adjusted to
satisfy wr=1: (@ in K~ ' s7!, ¢ in K")=(0Q) (0.000942, 9.42), (A)
(0.000471, 4.71) and (v7) (0.00188, 18.8). The range of wT/B<l1
corresponds to heating only (d7,/dt>0).

with different heating rate and determined the expo-
nent of the heating-rate dependence of the character-
istic time. We examined the cases of Rj: independent
of AT, RipxAT"?, RixAT, Ryx AT* and R.ox e
and confirmed the above relationship between R(AT)
and 7(/3).

4.4. Non-linear response

The kinetic model which we have employed
(Egs. (19)—(22) and Egs. (34)—(39)) does not assume
linear response and hence the results of the computer
simulation show non-linearity. The non-linear
response can be easily recognized by the plots of
Lissajous diagram in Fig. 7(a)—(c). For Ry in Fig. 7(a),
the diagram is a circle because the response is linear as
will be discussed below. For R; and R., the deforma-
tion of the circle is clearly seen in Fig. 7(b) and (c),
respectively.

The non-linear behavior is also seen in the plot of
the ratio of the second harmonic to the first harmonic
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Fig. 7. Nonlinear response shown in Lissajous diagrams, (a)—(c),
and in the plots of the ratio of the second harmonic, F», to the first
harmonic, F, of modulated heat flow, (d) and (e). In the Lissajous
diagrams (a)—(c) and in (d), the melting-rate coefficient is Ry (a and
O), Ry (band A) and R, (c and v/): Ry=0.1571, R;=0.740AT and
R.=10"%e***2T_1). In (a)~(c), the modulation period was 40 s.
Other parameters for (a)-(d) are =1 Kmin~' and wTy/8=1. In
(e), melting-rate coefficient of R, has been employed with the same
values of the parameter as in Fig. 6. The meanings of the symbols
in (e) are also the same as in Fig. 6. The slope of the fitting line in
(e) is 1.0.

of modulated heat flow, F,/F;, shown in Fig. 7(d).
Here again, the response for R is linear (F,=0), while
the others show maximum non-linearity near wr=1 in
both cases. It is further conformed in Fig. 7(e) that the
ratio, F,/F, 1ncreases linearly with T, because
Fi < Tg and F, T as expected in Eq. (14).

5. Discussion

In this paper, we have applied the method of
computer simulation to the modeling of the melting
kinetics of polymer crystals. We first examined the
case of a Gaussian distribution of melting points and
confirmed that the frequency dependence of the appar-
ent heat capacity at a given temperature is well

described by the corresponding analytical solution
which was originally obtained for a uniform distribu-
tion of the melting points. In the range where the
change in the melting distribution is large, the depen-
dence is modified because one loses steady state. We
have previously presented the condition required for
the (quasi-)steady state in the following manner [17]:

(Temperature range in which
m) is negligible) > 3
x (period of modulation) and > 27(37.

the change in ¢ (T,

In the shoulder of the melting peak, the change in
oo(T) becomes large and the above condition is not
satisfied. In the experimental results, we also see
similar behavior [16-18].

Second, we examined the behavior with a uniform
distribution of melting points with which we can be
assured of steady state. The obtained results were in
good agreement with the analytical results if the
condition of heating only (d7y/dr>0) is satisfied.
Experimentally, we have also confirmed that the
apparent heat capacity in the melting range keeps a
constant value for d7/dr>0 but shows a systematic
decrease if the condition is not satisfied [17]. The main
reason for the decrease is the supercooling of some
fractions during the melting process in the range
d7/dt<0. Therefore, the condition of heating only
provides a simpler situation for the analysis of the
melting kinetics.

In the third part of this work, we have confirmed the
relationship between the superheating dependence of
the melting-rate coefficient, R(AT), and the heating-
rate dependence of the characteristic time, 7(). The
modeling of the melting kinetics with R depending on
superheating is essential for the dependence of 7(3). If
we simply apply the superposition of a relaxation
function of exp(—#/7) to obtain the frequency response
function of Debye’s type, the heating-rate dependence
of 7 will not be explained. Experimentally [16-18],
the dependence of the characteristic time was in the
range —1<x<0 with the expression 7ox3", and hence
it is within the range of the predicted exponent shown
in Eq. (41).

In the last part, we examined the non-linear
response of the kinetics. For R, the response was
linear, while the response for R, and R, exhibited non-
linearity. The differences can be understood in terms
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of the temperature derivative of the melting-rate
coefficient. As is typically shown in the following
equations which apply to the crystallites having their
melting temperature at T,,=(t, with the sample tem-
perature of Ty = f3¢ + T sin[w(t — )], the expansions
of the melting-rate coefficient, R, and the crystallinity,
¢, at time t=to+At are determined by the temperature
derivative of R:

R ~ R(BAt) + R (BA/1)T sin(wAr)
)

+ %RN(BAI)T‘ sin(2wAr) + - -, (42)
N At
dgoeJo BRI 7, / R'(Bx) sin(wx) dx
0
At
+%T§ / R"(Bx)sin(2wx)dx + -+ |.  (43)
0

From Egs. (11) and (12), the heat flow of melting is
given by the product of R¢ as

Frei(t) = —AH / R dTy,. (44)
0

For the constant rate of Ry, the temperature deri-
vatives are zero, namely R'=R"=---=0 in Egs. (42)
and (43), and hence R¢ in Eq. (44) does not have
higher terms. Therefore, the response has only the first
harmonic in Eq. (14) in the case of Ry. On the other
hand, for R depending on heating rate, since R'#0 in
Eqgs. (42) and (43), the kinetic model predicts non-
linear response and higher harmonics. Experimentally,
we have already recognized that the modulated heat
flow has higher harmonics in the melting range [16—
18]. The kinetic modeling presented here is consistent
with the experimental results in this sense.

6. Conclusion

The response of the melting kinetics presented here
shows a frequency dependence well fitted with the
analytical solutions in both cases of Gaussian distri-
bution and uniform distribution of the melting points if
the change in the distribution is small enough and the
condition is of heating only. The characteristic time
required for the melting of a fraction is dependent on

heating rate due to the superheating dependence of the
melting-rate coefficient. It is pointed out that the non-
linear response of the kinetics is an essential feature of
the melting kinetics depending on the degree of super-
heating. Though we recognize that the raw data of T-
MDSC includes the response of DSC apparatus (heat
transfer coefficient, heat capacity of sample stage,
etc.) and the calibration to the magnitude and phase
angle is important for the melting region,” the present
work clearly demonstrated that the response of the
melting kinetics can explain the basic feature of the
apparent heat capacity obtained with T-MDSC in the
melting region of polymer crystals. Taking into
account the response of the DSC apparatus, an exten-
sion of the simulation method is now under progress.
The significance of the calibration will be clarified by
this approach.
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