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Abstract

Computer simulation has been applied to the modeling of the melting kinetics of polymer crystals, which we have recently

presented to predict the response of the kinetics to a sinusoidal modulation in temperature on heating. The frequency and

heating-rate dependencies have been examined with a Gaussian or uniform distribution of the melting points. For both of the

distributions, the details of the dependence have been examined on the basis of the analytical results of the modeling. It has

also been con®rmed that the response of the kinetics has higher harmonics as expected from the formulation of the modeling.

This behavior corresponds to the experimental results of temperature-modulated DSC (T-MDSC) in the melting region of

polymer crystals. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a temperature-modulated differential scanning

calorimetry (T-MDSC) [1±6], we apply a temperature

modulation to the sample temperature, Ts, under linear

heating/cooling or isothermal condition. We obtain a

response in the modulated heat ¯ow, _Q, which is

related to the modulation in sample temperature with

an apparent heat capacity, �~C eÿi�, de®ned as

Ts � �T s � ~Ts ei�!t���; (1)

_Q � �_Q� ~_Q ei�!t���; (2)

~_Q ei�!t��� � ÿ�~C eÿi� d

dt
~Ts ei�!t���; (3)

�~C eÿi� � �~C
0 ÿ i�~C

00
; (4)

where �T s can be linear heating or cooling, �T s��t, or a

constant temperature.

The apparent heat capacity is a complex quantity in

the temperature range of a relaxation process such as

the � process related to the glass transition [7±9] and

in the range of phase transitions such as crystallization

[10±14] and melting [1±3,15±18]. In the melting

region of polymer crystals, it is known that the appar-

ent heat capacity shows large peaks in magnitude and

phase angle. We have argued that the response of the

melting kinetics is responsible for these large changes

[16±18].

In the present paper, we examine the response of the

melting kinetics of polymer crystals through a com-

puter simulation based on our modeling of the process.
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In the following, we ®rst review the basic idea of our

approach and then show the analytical results of the

modeling. The method of computer simulation is

presented subsequently and the results are examined

on the basis of the analytical results.

2. Modeling [16,17]

2.1. A basic model

In the transformation region, the heat ¯ow to and

from the sample can be represented by the sum of the

contribution from heat capacity and of the exo- or

endothermic heat ¯ow of transformation, F(t):

_Q � ÿmcp

dTs

dt
� F�t�: (5)

Since the rate of transformation is a function of

supercooling or superheating and hence of Ts, the heat

¯ow can be expanded about the sample temperature

for suf®ciently small modulation [1±3,19]:

F�t; Ts� � �F�t; �T s� � F0T�t; �T s�~Ts ei�!t��� � � � � :
(6)

The second term in the expansion must be in

balance with the modulation components of heat ¯ow

and of contribution of heat capacity:

~_Q ei�!t��� � ÿmcp

d

dt
~T s ei�!t��� � F0T ~T s ei�!t���:

(7)

By re-arranging the relationship, we obtain the

expression of the apparent heat capacity in the trans-

formation region:

�~C eÿi� � mcp � i

!
F0T : (8)

This is the expression of the apparent heat capacity

on which our modeling of the melting kinetics is

based.

2.2. Melting of polymer crystals

Polymer samples are aggregates of small crystal-

lites, the melting points of which have a continuous

distribution mainly determined by the distribution of

lamellar thickness of crystals and the distribution

of molecular weight of polymer chains. The wide

distribution of melting points is responsible for the

broad endothermic peak (e.g. �20 K) in the melting

region of polymer crystals [20]. Hence, we need to

consider the successive melting of the crystallites in

the melting region for a heating run.

We consider the melting process of the crystallites

by introducing the crystallinity of a fraction, �(t, Tm),

having the melting point in the range from Tm to

Tm�dTm. Then, we employ the simplest kinetics of

melting by utilizing the following differential equa-

tion:

d

dt
��t; Tm� � ÿR��T���t; Tm�; (9)

where R represents the coef®cient of the total melting

rate and is determined by the superheating

�T�TsÿTm.

We further assume that the heating run satis®es the

condition of heating only (dTs/dt>0), and hence we do

not have to consider the reverse process of crystal-

lization; the process therefore becomes a one-way

transformation of melting and the interpretation will

be straightforward. Then, the solution of Eq. (9) is

simply given as

��t; Tm� � ��0; Tm� exp ÿ
Zt
0

R dt0

24 35: (10)

The total crystallinity, Mc(t), and the endothermic

heat ¯ow of melting, Fmelt(t), are expressed by the

fractions as

Mc�t� �
Z1
0

dTm ��t; Tm�; (11)

Fmelt�t� � �H
dMc

dt
; (12)

where �H(>0) represents the enthalpy change of the

system on melting.

It is noted that in the present treatment we will not

consider the contribution of re-crystallization and

re-organization in the melting region, because we

expect much smaller response of those processes to

temperature modulation than that of melting as is

the case for crystallization [16±18].

76 A. Toda et al. / Thermochimica Acta 330 (1999) 75±83



2.3. Assumption of a uniform distribution of the

melting points

In order to obtain the analytical expression of the

response of heat ¯ow to temperature modulation, we

need to assume a steady state and the same form of

R(�T) for the fractions. The steady state is realized

with a uniform distribution of the fractions at the

initial state:

��0; Tm� � �0: (13)

For the uniform distribution, the steady response in

heat ¯ow to a sinusoidal modulation of temperature

should be represented by a Fourier series expressed as

Fmelt�t� � �Fmelt � F0T�!�~T s ei!t

� 1
2
F00T�!�~T

2

s e2i!t � � � � ; (14)

�Fmelt � ÿ�H�0�; (15)

F0T�!�~T s � �0�

Z1
ÿ1

dt eÿi!t Fmelt�t�: (16)

The contribution of the melting kinetics to the

apparent heat capacity, f, is then de®ned as

�~C eÿi� � mcp � f �!�; (17)

f �!� � f eÿi
 � f 0�!� ÿ i f 00�!� � i

!
F0T�!�:

(18)

2.4. R0, R1 and Re

We have analytically examined the following three

different dependencies on superheating of the melting

rate coef®cient. As shown below, the melting kinetics

is described by a characteristic time, � , which is

dependent on the heating rate, �, as �/�x with

ÿ1�x�0.

(i) Melting rate independent of superheating:

R0 : independent of �T ; (19)

�0��t� � �0 exp ÿ�t

�0

� �
; (20)

f0�!� � �H�0

1� i!�0

; (21)

�0 � 1

R0

: (22)

(ii) Linear dependence of the melting rate on super-

heating:

R1 � a�T; (23)

�1��t� � �0 exp ÿ �t

2�1

� �2
 !

; (24)

f1�!� � �H�0

!�1

eÿ�!�1�2
Z!�1

0

ex2

dx

8<:
ÿi

���
�
p
2

1ÿ eÿ�!�1�2
� ��

; (25)

�1 � 1

2a�

� �1=2

: (26)

(iii) Exponential dependence of the melting rate on

superheating:

Re � a

c
�ec�T ÿ 1�; (27)

fe�!� � �H�0

1� !�e

1

� 0e

Z1
0

dx �ex=�e ÿ eÿi!x�

� exp ÿ �e

� 0e
ex=�e ÿ 1ÿ x

�e

� �� �
; (28)

�e � 1

�c
; (29)

� 0e �
c

a
: (30)

(a) For �e/�e
0�1, Re'R1, �e'�1 and fe'f1 with

�1 � ��e�
0
e=2�1=2

.

(b) For �e/�e
0�1,

Re ' a

c
ec��t; (31)

�e��t� : nearly stepwise at �t � �e; (32)

fe�!� ' �H�0

1� i!�e
: (33)

3. Method of computer simulation

We consider the distribution of melting points of the

following forms corresponding to the actual distribu-

tion and to the uniform distribution of the melting
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points:

�0�Tk
m� / exp ÿ 1

2

k ÿ �M

�

� �2
" #

; (34)

�0�Tk
m� : constant; (35)

Tk
m � ��tk; (36)

where Tk
m is taken discretely with the temperature

change, ��t, in a unit time, �t. In Eq. (34), �M and

� are the mean temperature and the peak width of the

distribution, respectively, normalized by ��t; typical

values of them were 5000 and 1000 for 10 000 sites

of Tk
m.

Sample temperature and the melting kinetics are

considered by the discrete time change, �t, as

follows:

Ts�j�t� � �j�t � ~Ts sin�!j�t�; (37)

��k��j� 1��t� � ���j� 1��t; Tk
m�

ÿ ��j �t; Tk
m� � ÿR��T���j�t; Tk

m��t;

(38)

Fmelt�j �t� � ÿmcp�� � ~T s! cos�!j�t��

��H
X

k

��k�j�t�
�t

; (39)

where mcp in Eq. (39) is the true heat capacity

assumed to be constant (or zero) in the following.

The unit time �t (<0.2 s) was properly selected for the

applied modulation period taken from 1 to 800 s. The

heating rate of ��1 K minÿ1 was mainly examined in

the simulation.

In order to incorporate the condition out of heating

only, it is assumed that the melting-rate coef®cient

becomes zero for �T<0. This condition is based on the

fact that the superheating and supercooling depen-

dence of melting and crystallization rates, respec-

tively, is quite asymmetric [20]; namely,

crystallization needs a much larger �T.

In the case of uniform distribution of the

melting points, we ran the simulation at least over

10 times the modulation period to con®rm the

steady state of the process. The obtained heat ¯ow

and the modulated sample temperature were then

analyzed by the same procedure as the experimental

data [5].

4. Results

4.1. Gaussian distribution of melting points

Fig. 1 shows the raw data of the heat ¯ow with

R1�a�T for different modulation periods and Fig. 2

shows the frequency response of the apparent heat

capacity determined from the raw data. In Fig. 3, the

Fig. 1. Raw data of heat flow for different modulation periods of

(a) 20 and (b) 150 s. The parameters are the following: �t�0.2 s,

��1 K minÿ1, !~T s/��0.5, R�0.74�T and mcp/�H�max
0 �1/4.

Fig. 2. Apparent heat capacity determined from the raw data as

typically shown in Fig. 1. Modulation periods are 2, 4, 6, 10, 20,

40, 80, and 150 s.
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dependence is examined at three different tem-

peratures marked in Fig. 2. The basic feature in

Fig. 3 is well described by the analytical solution

of Eq. (25) for R1 and is similar to the behavior

observed experimentally [16±18]. For (2) and (3) in

the shoulder of the peak in Fig. 2, the dependence

shown in Fig. 3 deviates from the ®tting curve for

shorter ! (longer modulation period). This behavior

should be due to the change in the distribution of

melting points on both sides of the peak, and hence it

must be due to the condition of loss of steady state; we

can also observe a similar behavior experimentally

[16±18].

4.2. Uniform distribution of melting points

Figs. 4 and 5 show the results of computer simula-

tion compared with the numerical calculations of

the analytical solutions of Eqs. (21), (25) and (28)

for R0, R1 and Re, respectively. The agreement

between simulation and numerical calculation is quite

satisfactory. As is seen in Fig. 4, the difference in the

frequency dependence of f0 and f1 is not large, and

hence we may be allowed to ®t the data with a

frequency response function of Debye's type equiva-

lent to f0.

In Fig. 6, the heating condition is examined for

!��1. The simulation results of f(!) are in good

agreement with the analytical results if the condition

is heating only, which is expressed as !~Ts=� < 1 from

Eq. (1). In the analytical treatment, we have assumed

the heating-only condition. When the condition is not

satis®ed, the melting process stops for some fraction

of time (R�0 for �T<0) in the range dTs/dt<0 and

hence the magnitude of the response decreases

(Fig. 6(a)); the same effect will be responsible for

the change in the phase angle in Fig. 6(b).

Fig. 3. Frequency dependence of the contribution of melting

kinetics, f(!), examined at three different temperatures marked in

Fig. 2 as (1) *, (2) ~, (3) &. The fitting lines represent the

analytical solution of Eq. (25) for R1.

Fig. 4. Results of computer simulation (*, ~, *, ~) compared

with the analytical solutions (lines) of Eqs. (21) and (25) for (a) R0

and (b) R1, respectively. Symbols (*, *) and (~, ~) in (a) and

(b) represent real and imaginary components, respectively. In the

Cole±Cole plot of (c), symbols * and * correspond to the cases of

R0 and R1, respectively. The parameters are as follows:

��1 K minÿ1, !~T s/b�0.5 and (a) R0�0.157 and (b) R1�0.74�T.
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4.3. Heating-rate dependence of the characteristic

time

From a dimensional analysis, it is expected that the

heating-rate dependence of the characteristic time, � ,

is determined by the superheating dependence of the

melting-rate coef®cient, R, as follows:

R��T� / �Ty; (40)

���� / �ÿy=�y�1�; (41)

which agrees with the results of the analysis shown

in Eqs. (22), (26) and (29); in the case

Re / ec�T ; y!1.

By examining the frequency dependence of the

apparent heat capacity for the uniform distribution

of the melting points, we have obtained the character-

istic time, � , from the peak frequency (!��1) which

gives a maximum in f00. We have done the analysis

with different heating rate and determined the expo-

nent of the heating-rate dependence of the character-

istic time. We examined the cases of R0: independent

of �T, R1/2/�T1/2, R1/�T, R2/�T2 and Re/ ec�T

and con®rmed the above relationship between R(�T)

and �(�).

4.4. Non-linear response

The kinetic model which we have employed

(Eqs. (19)±(22) and Eqs. (34)±(39)) does not assume

linear response and hence the results of the computer

simulation show non-linearity. The non-linear

response can be easily recognized by the plots of

Lissajous diagram in Fig. 7(a)±(c). For R0 in Fig. 7(a),

the diagram is a circle because the response is linear as

will be discussed below. For R1 and Re, the deforma-

tion of the circle is clearly seen in Fig. 7(b) and (c),

respectively.

The non-linear behavior is also seen in the plot of

the ratio of the second harmonic to the ®rst harmonic

Fig. 5. Results of computer simulation (*, ~) compared with the

analytical solution (thick line) of Eq. (28) for Re. The thin and

dotted lines represent f(!) of Eqs. (33) and (25) with

�1���e�
0
e=2�1=2

, respectively. Symbols * and ~ represent real

and imaginary components, respectively. In (a), �e/�e
0�1 and the

asymptotic behaviors are confirmed for �e/�e
0�1 and �1 in (b)

and (c), respectively. The parameters are the following:

��1 K minÿ1, !~T s/��0.5 and �e/�e
0� (a) 15.34/15.34, (b) 150.1/

0.540 and (c) 6.37/10 000 s/s.

Fig. 6. Comparison of the simulation results of fe eÿi
e defined in

Eq. (18) with the analytical solution of f th
e eÿi
th

e for Re (�e/�e
0�1)

in Eq. (33) for different heating conditions (the variable was ~Ts).

Different symbols correspond to (period in s, � in K minÿ1)�(*)

(40, 1), (~) (40, 2) and (5) (20, 1). Melting-rate coefficient of Re

has been employed with the coefficients of a and c adjusted to

satisfy !��1: (a in Kÿ1 sÿ1, c in Kÿ1)�(*) (0.000942, 9.42), (~)

(0.000471, 4.71) and (5) (0.00188, 18.8). The range of !~T s/b<1

corresponds to heating only (dTs/dt>0).
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of modulated heat ¯ow, F2/F1, shown in Fig. 7(d).

Here again, the response for R0 is linear (F2�0), while

the others show maximum non-linearity near !��1 in

both cases. It is further conformed in Fig. 7(e) that the

ratio, F2/F1, increases linearly with ~T s because

F1 / ~T s and F2 / ~T
2

s as expected in Eq. (14).

5. Discussion

In this paper, we have applied the method of

computer simulation to the modeling of the melting

kinetics of polymer crystals. We ®rst examined the

case of a Gaussian distribution of melting points and

con®rmed that the frequency dependence of the appar-

ent heat capacity at a given temperature is well

described by the corresponding analytical solution

which was originally obtained for a uniform distribu-

tion of the melting points. In the range where the

change in the melting distribution is large, the depen-

dence is modi®ed because one loses steady state. We

have previously presented the condition required for

the (quasi-)steady state in the following manner [17]:

�Temperature range in which

the change in �0�Tm� is negligible� � �

� �period of modulation� and � 2���:

In the shoulder of the melting peak, the change in

�0(Tm) becomes large and the above condition is not

satis®ed. In the experimental results, we also see

similar behavior [16±18].

Second, we examined the behavior with a uniform

distribution of melting points with which we can be

assured of steady state. The obtained results were in

good agreement with the analytical results if the

condition of heating only (dTs/dt>0) is satis®ed.

Experimentally, we have also con®rmed that the

apparent heat capacity in the melting range keeps a

constant value for dTs/dt>0 but shows a systematic

decrease if the condition is not satis®ed [17]. The main

reason for the decrease is the supercooling of some

fractions during the melting process in the range

dTs/dt<0. Therefore, the condition of heating only

provides a simpler situation for the analysis of the

melting kinetics.

In the third part of this work, we have con®rmed the

relationship between the superheating dependence of

the melting-rate coef®cient, R(�T), and the heating-

rate dependence of the characteristic time, �(�). The

modeling of the melting kinetics with R depending on

superheating is essential for the dependence of �(�). If

we simply apply the superposition of a relaxation

function of exp(ÿt/�) to obtain the frequency response

function of Debye's type, the heating-rate dependence

of � will not be explained. Experimentally [16±18],

the dependence of the characteristic time was in the

range ÿ1�x�0 with the expression �/�x, and hence

it is within the range of the predicted exponent shown

in Eq. (41).

In the last part, we examined the non-linear

response of the kinetics. For R0, the response was

linear, while the response for R1 and Re exhibited non-

linearity. The differences can be understood in terms

Fig. 7. Nonlinear response shown in Lissajous diagrams, (a)±(c),

and in the plots of the ratio of the second harmonic, F2, to the first

harmonic, F1, of modulated heat flow, (d) and (e). In the Lissajous

diagrams (a)±(c) and in (d), the melting-rate coefficient is R0 (a and

*), R1 (b and ~) and Re (c and 5): R0�0.1571, R1�0.740�T and

Re�10ÿ4(e9.425�Tÿ1). In (a)±(c), the modulation period was 40 s.

Other parameters for (a)±(d) are ��1 K minÿ1 and !~Ts/��1. In

(e), melting-rate coefficient of Re has been employed with the same

values of the parameter as in Fig. 6. The meanings of the symbols

in (e) are also the same as in Fig. 6. The slope of the fitting line in

(e) is 1.0.
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of the temperature derivative of the melting-rate

coef®cient. As is typically shown in the following

equations which apply to the crystallites having their

melting temperature at Tm��t0 with the sample tem-

perature of Ts � �t � ~T s sin�!�t ÿ t0��, the expansions

of the melting-rate coef®cient, R, and the crystallinity,

�, at time t�t0��t are determined by the temperature

derivative of R:

R � R���t� � R0���=t�~T s sin�!�t�
� 1

2
R00���t�~T2

s sin�2!�t� � � � � ; (42)

���0 e
ÿ
R �t

0
dx R��x�

1ÿ~T s

Z�t

0

R0��x� sin�!x� dx

24
� 1

2
~T

2

s

Z�t

0

R00��x� sin�2!x� dx� � � �
35: (43)

From Eqs. (11) and (12), the heat ¯ow of melting is

given by the product of R� as

Fmelt�t� � ÿ�H

Z1
0

R� dTm: (44)

For the constant rate of R0, the temperature deri-

vatives are zero, namely R0�R00�� � ��0 in Eqs. (42)

and (43), and hence R� in Eq. (44) does not have

higher terms. Therefore, the response has only the ®rst

harmonic in Eq. (14) in the case of R0. On the other

hand, for R depending on heating rate, since R0 6�0 in

Eqs. (42) and (43), the kinetic model predicts non-

linear response and higher harmonics. Experimentally,

we have already recognized that the modulated heat

¯ow has higher harmonics in the melting range [16±

18]. The kinetic modeling presented here is consistent

with the experimental results in this sense.

6. Conclusion

The response of the melting kinetics presented here

shows a frequency dependence well ®tted with the

analytical solutions in both cases of Gaussian distri-

bution and uniform distribution of the melting points if

the change in the distribution is small enough and the

condition is of heating only. The characteristic time

required for the melting of a fraction is dependent on

heating rate due to the superheating dependence of the

melting-rate coef®cient. It is pointed out that the non-

linear response of the kinetics is an essential feature of

the melting kinetics depending on the degree of super-

heating. Though we recognize that the raw data of T-

MDSC includes the response of DSC apparatus (heat

transfer coef®cient, heat capacity of sample stage,

etc.) and the calibration to the magnitude and phase

angle is important for the melting region,2 the present

work clearly demonstrated that the response of the

melting kinetics can explain the basic feature of the

apparent heat capacity obtained with T-MDSC in the

melting region of polymer crystals. Taking into

account the response of the DSC apparatus, an exten-

sion of the simulation method is now under progress.

The signi®cance of the calibration will be clari®ed by

this approach.
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